The two-K method used in the program is accurate
for either low or high Reynolds number. This method is more

favorable than the conventional one-K method.
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Fig. 1—Example piping isometric.

one-K technique. Most published K values apply to fully de-
veloped turbulent flow as K is found to be independent of
Ng, where Np, is sufficiently high. However, the two-K
method has a correction factor for different fittings. Hooper’
has given a detailed analysis of his method compared to oth-
ers”*10 and has shown that his method is suitable for any size
of pipe.

The two-K method is in general independent of the rough-
ness of the fitting, but it is a function of Reynolds number
and of the exact geometry of the fitting. The method can be
expressed as:

K = K\/Ng, + K, (1 + 1/ID) (3)
where K; = K for the fitting at Ng, = 1

K. = K for a larger fitting at Ny, = o

ID = Internal diameter of attached pipe, inch.
Table 1 lists values of K, and K, for the two-K method.

Friction factor. The estimation of friction factor for calcu-
lating pressure losses for single phase fluids through a pipe
has been mainly through the Moody!! chart, which is made
up of the following equations:

For laminar flow with Ng,< 2,100, the Hagen-Poiseuille
equation gives:

Jo = 64/Np, 4

TABLE 2—Values of absolute pipe roughness
g ft

Riveted steel 0.003 to 0.03
Concrete 0.001 to 0.01
Wood stave 0.0006 to 0.00
Cast iron 0.00085
Galvanized iron 0.0005
Asphalted cast iron 0.0004
Commercial steel or

wrought iron 0.00015
Drawn tubing 0.000005
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where fp, is the Darcy friction factor which is four times the
Fanning friction factor, f, i.e. fp = 4 f&

Npg, is the Reynolds number = Dvp/u

For fully developed turbulent flow regions in smooth and
rough pipes, the Colebrook (6) equation is universally
adopted and can be expressed as:

1/fp* = — 0.8686 In (¢/3.7D + 2.51/Npfp''?) (5)

However, this equation is implicit in fp, as it can not be rear-
ranged to derive f directly and thus requires an iterative solu-
tion. Several explicit equations'®!? have been developed as
alternatives to the Colebrook’s which yield results of suffi-
cient accuracy for most engineering problems. A detailed re-
view of these explicit equations is given by Gregory and Fo-
garsi'®, Different piping materials are often used in the
chemical process industries, and at a high Reynolds number,
the friction factor is affected by the roughness of the surface.
This is measured as the ratio ¢/D of projections on the sur-
face to the diameter of the pipe. Glass and plastic pipe essen-
tially have e = (. In this program commercial steel (wrought
iron) with € = 0.00015 ft is used. Values of € are shown in
Table 2.

Numerical technique. The Colebrook equation for fric-
tion factor, fp, involves a trial and error procedure and thus
requires the use of a numerical method.

The Newton-Raphson method is applied in the program
with convergence to +0.0001. This requires differentiating
the objective function. The Newton-Raphson method is of
the form:

X1 = X = F(X)/IF (X)) (6)
where j = 1,2,3 . . . jmax.

A& is the guessed root of the equation given by F (X) = 0.
F (X)) is the objective function. F" (X)) is the value of the
differential of the objective function. The j is the iterative
counter and jymax is the maximum iteration.

The derivative of the objective function given by equation
5 1s given as equation 7.

F(f) = - 0.5/f' —~ 4.033/(Np, f 15 /D + 9.287F) (7)

The first guess, i.e. the first iteration in Newton-
Raphson’s method must be carefully selected as sometimes
the root does not converge even after many iterations. The
Newton-Raphson method has been found to converge qua-
dratically. In the present program, a default value of 0.01 for
the first iteration of fp, is chosen. The value has been found to
converge to yield an actual value (root of the equation) of the
friction factor after few iterations in various problems.

Equivalent length. The equivalent pipe length concept is
the most convenient method for calculating the overall pres-
sure loss in a pipe. The method adds some hypothetical
length of pipe to the actual length of the fitting, giving an
equivalent length of pipe that has the same total loss as the
fitting. However, the drawback to this approach is that the
equivalent length for a given fitting is not constant, but de-



